Closing Mon:
10.1
2.1, 2.2, 2.3

Closing Fri:
Warning: Expect a lot of work.
Visit the MSC! Check newsletter hints. Entry Task (directly from HW):

An ant is walking around the unit circle such that: $x=\cos (\pi t), y=\sin (\pi t)$.

Starting at the same time, a spider walks from $(4,0)$ along a line tangent to the circle, as shown.
2. When will the ant first get to point P ? Second time?
3. Give the parametric linear equations for the spider in order for it to get the point P at this second time.

Linear Motion: $\quad x=x_{0}+v_{x} t$

$$
y=y_{0}+v_{y} t
$$

$$
\begin{aligned}
& \left(x_{0}, y_{0}\right)=\text { initial location } \\
& v_{x}=\text { horizontal velocity }=\frac{\Delta x}{\Delta t} \\
& v_{y}=\text { vertical velocity }=\frac{\Delta y}{\Delta t}
\end{aligned}
$$

Circular: $x=x_{c}+r \cos \left(\theta_{0}+\omega t\right)$

$$
y=y_{c}+r \sin \left(\theta_{0}+\omega t\right)
$$

$\left(x_{c}, y_{c}\right)=$ center of circle
$r=$ radius of circle
$\theta_{0}=$ initial angle
$\omega=$ angular speed $=\Delta \theta / \Delta \mathrm{t}$
Example: $x=2 \cos \left(\frac{3 \pi}{2}+\frac{\pi}{2} t\right)$

$$
y=3+2 \sin \left(\frac{3 \pi}{2}+\frac{\pi}{2} t\right)
$$

Example:

A bug follows a circular path with radius 8 inches. It starts at the westmost edge. It rotates
counterclockwise at a constant 10 revolutions per minute.

Give the equations for motion in terms of time t.

$$
\begin{array}{ll}
r=? ? & \\
\theta_{0}=? ? & \text { (give in radians) } \\
w=? ? & \text { (give in radians/min) }
\end{array}
$$

Ch. 2 Limits and Derivatives

2.1 Motivation

Calculus is primarily about "rates".

$$
\text { rate }=\frac{\text { change in quantity }}{\text { change in time }}
$$

We will find instantaneous rates, by building a limiting process of better and better approximations.

Example: The distance traveled by an object is recorded at various times:

t (seconds)	0	1	2	3
Dist (meters)	0	1.2	4.5	10.4

1. What is the average velocity ... from $t=0$ to $t=3$?
... from $t=1$ to $t=3$?
... from $t=2$ to $t=3$?
2. What is the instantaneous velocity at $\mathrm{t}=3$?

Example:

Consider the function: $f(x)=x^{2}$

1. Find the slope of the secant line from $x=1$ to $x=2$.
2. Find the slope of the secant line from $x=1$ to $x=1.1$.

In this course we will find $\mathrm{f}^{\prime}(1)=$ 'slope of the tangent at $x=1$ '

$$
=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}
$$

